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1. INTRODUCTION 

THE TOPIC of laminar forced convection in ducts having 
simple and non-simple cross sections has been extensively 
studied [I, 21. A recent review on the subject [3] covered a 
wide range of solution methods with some applications. 
Many of the investigations cited in this review have not 
accounted for the simultaneous effect of forced convection 
and radiation in the thermal entrance region of ducts where 
the flowing medium is a participating gas. However, other 
investigations [47] specializing on circular tubes have clearly 
demonstrated the important influence of radiation on the 
forced convection process in high temperature gas flows. 

The present investigation addresses the problem of com- 
bined laminar convection and radiation transfer in the region 
of thermal development of non-circular isothermal ducts. 
Under the assumption of a gray gas [8] and fully developed 
velocity at the entrance, the thermal development of the 
participating medium in an isothermal duct accounts for 
both emission and absorption. Rigorous modeling of radi- 
ation in a participating medium formulation involves the 
solution of a non-linear integral equation. However, various 
approximates of accurate differential methods, such as the 
method of moments [8], model the radiation transfer by 
an elliptic partial differential equation which describes the 
irradiation distribution in the medium. 

The developing temperature is determined by solving the 
three-dimensional energy equation, via the method of lines 
(MOL) [9]. The transversal derivatives in this parabolic par- 
tial differential equation are replaced by finite difference 
formulations while the axial derivative remains continuous. 
The integration domain is divided into a collection of lines 
parallel to the axial coordinate of the duct. Thus, the partial 
differential energy equation is replaced by a system of non- 
linear ordinary differential equations of the first order, where 
the dependent variables are the temperatures along each line 
and the independent variable is the axial coordinate. For 
computational purposes, the retention of equal transversal 
intervals in the presence of irregular boundaries presents a 
complication requiring special attention for nodes in the 
neighborhood of the boundary [lo]. The construction of the 
grid in the duct cross section is done such that the dividing 
lines in the grid itself coincide with the irregular boundaries. 

2. GOVERNING EQUATIONS 

Consider a fully developed laminar gas flow inside a 
straight duct of non-circular cross section. At x = 0, the gas 
temperature is uniform and equal to r,, and for x > 0, the 
outer surface of the duct is maintained at an isothermal 
temperature, T,. The participating gas in the region of ther- 
mal development is assumed to be gray, emitting and absorb- 
ing. Under the idealization of temperature-invariant prop- 
erties, the corresponding energy equation may be expressed 

by 

where X, Y and z are the Cartesian coordinates of the duct. 
Turning attention to the second term on the right-hand 

side of equation (l), div qR characterizes the radiative con- 
tribution of a participating gas. In fact, this contribution 
may be modeled by an approximate differential method, such 
as the method of moments in two dimensions [8]. Accord- 
ingly, the radiative transfer equation (RTE) is conveniently 
expressed in differential form as follows : 

divq, = -K,(G-4oT4) (2) 

where K, is the total volumetric absorption coefficient, r~ the 
StefanBoltzmann constant and the irradiation G is given 
by the equation 

Upon introduction of a reference temperature Trcr = T, 
and a characteristic length b, the customary dimensionless 
variables and parameters are 

The energy equation (1) and the equation of radiative 
transfer (3) may be transformed to the coupled system of 
partial differential equations 

U$= gy$ + g +NT;(G-c#J~) (5) 

I a%* a’G* a2G* 
PeZ F + F + dZ2 = 37b2(G*-49 (6) 

respectively. 
With regards to the contribution of the first term on the 

left-hand side of equation (6), Echigo et al. [5] performed a 
series of numerical experiments for a conjugate version of 
this problem related to circular pipes. Their results showed 
that axial radiation penetrated one or two diameters in the 
upstream region of the heat exchange section. This con- 
clusion was also verified by Pearce and Emery [4] using a 
more formal order-of-magnitude analysis for circular pipes. 
They proposed a radiative Peclet number that serves to define 
the threshold of axial radiation effects. That is, in terms of 
the hydraulic diameter, Re,h,Pr(~,/N) > 10. 

Therefore, applying this crtterion to equation (6). the axial 
variation of G* may be dropped resulting in the two-dimen- 
sional equation applicable at the duct 

a’G* a2c 
FF + lzz -37,Z(G-49. (7) 
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To complete the formulation, the dimensionless boundary 
conditions Imposed on equattons (5) and (7) may be written 
in compact form as follows : 

(a) at the entrance X = 0. 4 = 4,: (8 
(b) at the duct surface, fp= I; (9) 

aG* 
~ = -&.5,,(G*-1) and ‘! = 

i\Y 
- ;i,r,(G*- 1) 

where 

(10) 

c, 

I. * - 2--F., 
(11) 

3. PARAMETERS OF INTEREST 

From a conceptual point of view, the mean bulk tem- 
perature is the most important thermal quantity in the analy- 
sis of forced convection in isothermal ducts. Its definition is 
given by 

I 
ZJ4 dA 

&(X) = -“-______ 

s 

(12) 

UdA 
A 

An indirect way of calculating the total heat transfer rate 
QT necessitates the definition of the total Nusselt number. 
namely 

where qwT denotes the local surface heat flux 

%&I = qWc+Y,K (14) 

and qWc and q*a represent the wall heat tlux due to con- 
duction and radiation, respectively. This relation leads to the 
genera1 expression 

Nu 
T 

= _ !nJdh) 
4x 

(15) 

At this stage, it should be stressed that calculation of the 
total heat transfer involving the total Nusselt number is more 
elaborate. Nevertheless, these calculations were carried out 
with the purpose of comparing the numerical results with 
asymptotic solutions published in the literature. 

4. NUMERICAL PROCEDURE 

In spite of the fact that the system of partial differential 
equations (5) and (7) is amenable to a finite element or a finite 
difference treatment. we have implemented here a variant of 
the former; the method of lines (MOL), for the analysis of 
equation (5). Conversely, to be consistent with the dis- 
cretization procedure adopted here, equation (7) may be 
solved by finite differences, also. This leads to an associated 
system of algebraic equations 

i=2 ,.._, I; ,j=2 ,..., J. (16) 

The numerical solution of this system may be carried out 
at each axial station X using an adaptation of the Gaussian 
elimination algorithm for the numerical determination of G* 
at each line. 

5. TEST CASES 

5.1. Rectangular duct 
The dimensionless energy equation for a rectangular 

is 
duct 

where the appropriate velocity distribution U is taken from 

11 11 

in which 

m = 1.7+0.5(r*) ’ J 

i 

2 for Z* d \ 
’ = 2+0.3(a*-:) for a* 2 \. (18) 

Equations (6) and (17) will be solved subjected to the bound- 
ary conditions of equations (8))(1 I). 

5.2. Equilateral triangular duei 
The fully developed velocity distribution in an equilateral 

triangular duct can be written as [I I] 

(Y)‘-;(Y)(Z)‘-2(Y)‘-2(Z)‘+; (19) 
J 

The boundary conditions for the irradiation, G*, on the 
hypotenuse will be 

,yy * 

i/i 
= - ;i.,z,(G*- I) (20) 

where n is the normal direction of the boundary 

6. DISCUSSION OF NUMERICAL RESULTS 

A numerical investigation involving the simultaneous 
effect of convection and radiation in a non-circular duct hav- 
ing an isothermal wall has been conducted. The problem 
considered in this study contains several parameters, optical 
thickness, T,,, conduction radiation, N, wall emissivity, c,. 
dimensionless axial distance, X, and total Nusselt number, 
NM,. Numerical solutions were generated for a variety of 
combinations of the above parameters. All computations 
were performed in double precision on a VAX 8800. The 
total Nusselt number, equation (15), has been calculated 
numerically in the thermal entrance region of square, rec- 
tangular and equilateral triangular ducts, using the MOL. 
These have been presented in Figs. I 3. For combined con- 
vection and radiation, Cp = 0.5 (the entrance-to-wall tcm- 
perature ratio) is used throughout the calculation. The fol- 
lowing sections are devoted to the discussion of each 
geometry. 

6.1. Rectangular duct 
Due to symmetry, the calculations are performed in l/4 of 

the duct cross section utilizing 16 lines. The aspect ratios of 
a* = 0.2, 0.5 and 1.0 are chosen for the calculations related 
to this geometry. Figure 1 represents the total Nusselt num- 
ber with a radiation-conduction parameter of ,Y = 3 and an 
optical thickness of T,, = 5 for emissivities 8, = 0. I and I .O. 
Inspection of the curves in this figure indicates that the Nus- 
selt number is largest initially at the emissivity oft;, = I .O and 
rectangular cross-section of G(* = 0.2 and starts gradually 
decreasing until it reaches a minimum value and then gradu- 
ally starts to increase again. The same behavior is observed 
with different aspect ratio and different emissivity. 

Figure 2 shows the total Nusselt number with an emisstvity 
of i:, = 1 .O, optical thickness of r,, = I .O for radiationcon- 
duction parameters of N = I and 3. The curves in Fig. 2 
indicate the same behavior as explained for Fig. I. 

The total Nusselt numbers with emissivity of c, = 1.0. 
radiation conduction parameter of N = 3 for optical thick- 
ness of z,, = 1.0 and 5.0 are shown in Fig. 3. This figure 
indicates that variation in optical thickness has a great 
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FIG. I. Effect of wall emissivity on the total Nusselt number for rectangular and equilateral triangular 
ducts. 
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FIG. 2. Effect of radiation<onduction parameter on the total Nusselt number for rectangular and 
equilateral triangular ducts. 

impact on the convection Nusselt number. At low optical 6.2. Equilateral triangular duct 
thickness, the maximum radiation Nusselt number occurs at In this geometry, because of the symmetry, only l/6 of the 
the end of the pipe as expected. At high values of optical total area is used in the calculation domain. The results for 
thickness, the radiation Nusselt number becomes an increas- this configuration are based on ten lines. Figure 1 represents 
ing function of the axial. the total Nusselt number with a radiation-conduction par- 



Technical Notes 

N = 3.0 
Ew= 1.0 

FIG. 3. Effect 

32 

28 

24 

8 

~ a* = 1.0 

_ _ a” = 0.5 
Square and 

a* = 0.25 
rectangular 

_ Equilateral 
trianguiar ducts 

$--- - --- b 

am3 i0 
-2 

10-l 

X 

ducts 

of optical thickness on the total Nusselt number for rectangular and equilateral triangular 
ducts. 

ameter of N = 3 and an optical thickness of ~~ = 5 for wall 
emissivities E, = 0.1 and 1.0. The resulting increase in the 
convective heat transfer with reduced emission is indicated 
in Fig. 1. Note that the emissivity at the entrance tends to 
accelerate the development of the thermal uniformity in the 
region. 

Figure 2 represents total Nusselt number with a wall emiss- 
ivity of E, = 1.0 and an optical thickness of th = I.0 for 
radiation<onduction parameters of N = I and 3. It is evi- 
dent from this figure that radiation considerably enhances 
the total heat transfer. 

Figure 3 represents the total Nusselt number with a wall 
rmissivity of i:,, = I, radiation conduction parameter ol 
12’ = 3 for an optical thickness ol‘ TV, -: I and 5. The com- 
parison of the set of curves for the total Nusselt number. 
Nlrr, in Fig. 3 indicates th,lt for sh = 5. V/t, incrcascs with 
,y. always. 

7. CONCLUSION 

In this paper, the effect of the combined convectiveeradi- 
ative heat transfer in thermally developing gas flow of rec- 
tangular and equilateral triangular ducts was investigated. 
The resulting set of simultaneous integro-partial differential 
equations was solved numerically using the method of 
moments. An explicit finite-difference procedure for laminar 
gas flow which takes advantage of the method of lines was 
developed. The numerical scheme was found to be simple, 
accurate and efficient. It is ideally suited for the combined 
mode of heat transfer. Results of these calculations for pure 
convection agree very well with previous investigations. The 
effects of the different physical parameters were sys- 
tematically studied. From the cases studied, the conclusions 
are that the influence of the radiation-conduction parameter 
on the thermal characteristic of the medium is substantial. 
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